
1 The Windows Programming Model

Chapter 3

The Windows Programming Model

The fundamental unit of Windows programming is—you guessed it—the window.
Windows are even more central to Windows programming than they are to the
Macintosh. Everything that happens in a Windows program—not only interactions
with the user, but all communications with the system as well—takes place under
the control of a window. Just about everything the Windows user sees on the screen
is actually a window. Even things that Macintosh programmers aren’t accustomed to
thinking of as windows, such as icons and menus and pushbuttons and scroll bars,
turn out to be just different kinds of window. If you want to understand Windows,
you have to begin by understanding windows.

A window communicates with the world by receiving and sending messages.
Windows messages are much like Macintosh events, in that they report occurrences
or circumstances that the window may wish to respond to. In fact, some Windows
messages correspond more or less exactly to equivalent Macintosh events: mouse
clicks, keystrokes, window activations and updates, and the like. However, as we’ll
see, Windows also uses the message mechanism to signal higher-level conditions
that a Macintosh program could obtain only through additional calls to the Toolbox.
The idea of sending a message to a window is the central unifying concept on which
the entire Windows programming model is based.

Each window has a window procedure to handle the messages it receives from the
system. Every message sent to a window ultimately finds its way to the window
procedure for processing. By defining how a window responds to messages, the
window procedure determines everything about the window’s appearance and
behavior on the screen. A category of windows sharing the same window procedure
is known as a window class. Every window must belong to some class or other,
specified as a parameter when the window is created. A typical program defines at
least one class, for its main window, and may define additional classes for other
kinds of window that it uses on the screen.

One of the neat things about Windows programming is that there’s already a
complete window procedure built into the system and ready to use. This predefined
window procedure, named DefWindowProc (“default window procedure”), provides a
standard response for each type of message your windows can receive. This saves
you from having to write your own code for every one of the hundreds of possible
messages the system can throw at you: you can just “cherry-pick” those messages
you care about and pass the rest on to the default window procedure, knowing that
it will do something sensible with them.

The Windows Programming Model 1

2 The Windows Programming Model
Using the default window procedure gives Windows programming something of an
object-oriented flavor, even if you’re not actually using an object-oriented
application framework like the Microsoft Foundation Classes. In effect, the default
window procedure defines a universal superclass that determines the baseline
appearance and behavior for all windows. Writing your own window procedure is like
creating a subclass: your windows inherit all of the standard behavior except for
those messages that you explicitly override with code of your own.

Each message is represented by a message structure of type MSG, shown in Listing
3–1. If the contents of this structure look familiar to you, it’s because they’re
essentially the same as the fields of the Macintosh event record: the type of
message, the time it was posted, the coordinates of the mouse at the time, and
some additional parameter information that varies depending on the message type.
Notice, though, that the Windows message also has to identify the window to which
it is directed; this isn’t necessary on the Macintosh, where all events are addressed
directly to the program itself. Notice also that the Windows message contains two
type-dependent parameters instead of only one. Originally, one of these was a 16-
bit word (wParam) and the other a 32-bit long word (lParam). In the Win32 interface,
however, the data types WPARAM and LPARAM are both defined as equivalent to LONG,
so both parameters are actually 32 bits in length.

Listing 3–1. Message structure

typedef struct tagMSG
{

HWND hwnd; // Handle to window receiving message
UINT message; // Message identifier
WPARAM wParam; // Type-dependent information
LPARAM lParam; // Type-dependent information
DWORD time; // Time message was posted
POINT pt; // Mouse position at time of message

} MSG;

When it comes to sheer variety of messages, Windows runs rings around the
Macintosh Toolbox. The Macintosh makes do with only sixteen event types, mainly
representing low-level user actions (mouse-down, mouse-up, key-down, key-up,
auto-key, disk-inserted) and very basic window manipulations (activate, update,
suspend, resume). Even the new-fangled Apple events (which pertain only to
communicating with other programs anyway) are subsumed under one single event
type, “high-level events.” Windows, on the other hand, defines literally hundreds of
message types—393 at last count, with more being added all the time. Luckily for
Windows programmers, it isn’t necessary for every program to provide an explicit
response to all 393 messages. As we’ll see, Windows has a built-in window
procedure that already provides a reasonable way of dealing with most of them; the
program needn’t step in unless it wants to handle something in an unusual or
nonstandard way.

The Windows Programming Model 2

3 The Windows Programming Model
Each message type is identified by its own unique message identifier in the message
member of the MSG structure. The Win32 header files define constant names for
each of the possible message identifiers, such as WM_CREATE, WM_MOVE, WM_KEYDOWN,
and WM_MENUSELECT. (Many of the most common message identifiers begin with the
prefix WM_, for “window message”; there are also other categories, such as BM_ for
“button message,” LB_ for “list box,” and so on, many of which we’ll be covering in
later chapters.) Table 3–1 shows a few of the more common message types and
their meanings.

Table 3–1. Some typical message types
Message type Meaning

WM_CREATE Window being created; initialize its associated data structures
WM_DESTROY Window being destroyed; deallocate or finalize its data structures
WM_SHOWWINDOW Show or hide window on screen
WM_CLOSE Close window
WM_ACTIVATE Window being activated or deactivated
WM_SIZE Window’s size has changed
WM_LBUTTONDOWN Left mouse button pressed
WM_CHAR Character typed on keyboard
WM_COMMAND Command chosen from menu
WM_QUIT Terminate program

Windows maintains a message queue for messages pending delivery, similar to the
event queue on the Macintosh. Each running program (and in a multithreaded
program, each separate thread) has its own message queue, holding messages
addressed to that program’s windows. The low-level device drivers for the mouse
and keyboard gather the user’s input actions and post them as messages to a
single, system-wide queue; the Windows system then pulls them out one at a time,
figures out which window they’re addressed to, and reposts them into the private
message queue of the program or thread that created that window. Eventually, the
program’s messasge loop wll retrieve each message and dispatch it to the
appropriate window procedure for processing. In general, the queue is reserved for
messages reporting “raw” user input like mouse clicks and keystrokes; it also
receives a few other types of message such as WM_TIMER (a software-controlled
interval timer has expired), WM_PAINT (the window must redraw all or part of its
contents, similar to a Macintosh update event), and WM_QUIT (the program is about
to terminate). Table 3–2 summarizes the message types that are posted to the
queue. We’ll be talking about a few of them in this chapter; the ones relating to
mouse and keyboard input will be covered in detail in Chapter 5.

The Windows Programming Model 3

4 The Windows Programming Model
Table 3–2. Queued messages
Message type Meaning

WM_LBUTTONDOWN Left mouse button pressed in client area (like Macintosh content
region)

WM_LBUTTONUP Left mouse button released in client area
WM_LBUTTONDBLCLK Left mouse button double-clicked in client area

WM_MBUTTONDOWN Middle mouse button pressed in client area
WM_MBUTTONUP Middle mouse button released in client area
WM_MBUTTONDBLCLK Middle mouse button double-clicked in client area

WM_RBUTTONDOWN Right mouse button pressed in client area
WM_RBUTTONUP Right mouse button released in client area
WM_RBUTTONDBLCLK Right mouse button double-clicked in client area

WM_NCLBUTTONDOWN Left mouse button pressed in nonclient area (like Macintosh window
frame)

WM_NCLBUTTONUP Left mouse button released in nonclient area
WM_NCLBUTTONDBLC
LK

Left mouse button double-clicked in nonclient area

WM_NCMBUTTONDOWN Middle mouse button pressed in nonclient area
WM_NCMBUTTONUP Middle mouse button released in nonclient area
WM_NCMBUTTONDBLC
LK

Middle mouse button double-clicked in nonclient area

WM_NCRBUTTONDOWN Right mouse button pressed in nonclient area
WM_NCRBUTTONUP Right mouse button released in nonclient area
WM_NCRBUTTONDBLC
LK

Right mouse button double-clicked in nonclient area

WM_MOUSEMOVE Mouse position changed within client area
WM_NCMOUSEMOVE Mouse position changed within nonclient area

WM_KEYDOWN Key pressed on keyboard (no Alt key)
WM_KEYUP Key released on keyboard (no Alt key)
WM_SYSKEYDOWN Key pressed on keyboard in combination with Alt key
WM_SYSKEYUP Key released on keyboard in combination with Alt key

WM_CHAR Character typed on keyboard (no Alt key)
WM_DEADCHAR Dead character typed on keyboard (no Alt key)
WM_SYSCHAR Character typed on keyboard in combination with Alt key
WM_SYSDEADCHAR Dead character typed on keyboard in combination with Alt key

WM_TIMER Software-controlled interval timer expired

The Windows Programming Model 4

5 The Windows Programming Model
WM_PAINT Redraw all or part of client area
WM_QUIT Terminate program

The Windows Programming Model 5

6 The Windows Programming Model

Unlike Macintosh events, however, not all Windows messages actually go through
the queue. Many of the messages a window receives are unqueued messages: the
system sends them directly to the relevant window procedure instead of posting
them to the queue to be retrieved by the program’s message loop. Whereas queued
messages generally correspond to the same kinds of low-level user input as
Macintosh events, unqueued messages operate at a higher level of discourse,
reporting conditions and occurrences that have been generated or interpreted
within the Windows system itself. Often, the system’s response to one message will
trigger a whole series of further messages sent directly to the window procedure.
These high-level, unqueued messages are what gives Windows programming much
of its ease and power.

Consider what happens when a Macintosh program receives a mouse-down event
from the Toolbox Event Manager. The decision logic needed to interpret and respond
to such an event typically involves an elaborate sequence of Toolbox calls designed
to narrow down the location and meaning of the event and provide the appropriate
user feedback on the screen. When the user presses and drags the mouse in a
window’s size box, for example, it touches off a sequence of operations more or less
like the following:

1. Your main event loop receives the event from WaitNextEvent.
2. You examine the event code in the what field of the event record and
determine that it is a mouse-down event.
3. You pass the event to the Toolbox routine FindWindow to determine
where on the screen the mouse was pressed, and learn that it was in the size
box of the active window.
4. You call the Toolbox routine GrowWindow to track the mouse for as long as
the user continues to hold down the button, providing visual feedback in the
form of a dotted outline whose bottom-right corner follows the mouse’s
movements.
5. When the button is released, GrowWindow returns to you with the new
dimensions of the window. You then pass this information to the Toolbox routine
SizeWindow to resize the window to its new dimensions.
6. SizeWindow automatically redraws the window’s frame in its new size, as
well as any portions of other windows’ frames that have become visible as a
result of the resizing operation. It also generates update events for those
portions of any window’s content region that need to be redrawn.
7. On a later pass of your event loop, you will receive the update event(s)
and will redraw the contents of the window(s) as needed.

The Windows Programming Model 6

7 The Windows Programming Model
Now let’s look at how Windows would handle this same event. Although the
Windows mouse can have as many as three buttons, the usual convention is to use
the left button for manipulating windows on the screen; so the Windows equivalent
to the user’s pressing the mouse button in a Macintosh window’s size box would be
to press the left button in the window’s sizing border. The sizing border is part of the
window’s nonclient area—the part of the window that the system draws for you,
corresponding to the window frame in Macintosh terminology—so this will generate
a WM_NCLBUTTONDOWN message (NC for “nonclient,” L for “left”) analogous to the
Macintosh mouse-down event. Your message loop will retrieve this message from
the queue with the Windows function GetMessage (like WaitNextEvent on the
Macintosh) and hand it off to another Windows function, DispatchMessage; the
latter, in turn, will relay it back to your program’s window procedure.

At this point, your window procedure could (theoretically, anyway) choose to
process the WM_NCLBUTTONDOWN message “by hand,” with a sequence of operations
similar to the ones you’d need to perform on the Macintosh: hit-testing the mouse
location, tracking the mouse as it drags the window’s sizing border, resizing the
window, and so on. But it’s much easier to skip all that and just pass the message
on to the default window procedure, DefWindowProc. That’s what the default
window procedure is there for: to provide a standard response to each message you
receive, saving you the trouble of having to write one for yourself.

So let’s assume you pass that mouse message (WM_NCLBUTTONDOWN) to the default
window procedure. Here’s where things start to get interesting. The first thing
DefWindowProc has to do is figure out what part of the window’s nonclient area
received the mouse click, so it sends the window the message WM_NCHITTEST, with
the mouse’s screen coordinates as a parameter. Again, you could intercept this
message in your window procedure and process it yourself, but you’ll usually just
pass it through to the default window procedure to perform the hit-test in the
standard way.

When the result of the WM_NCHITTEST message indicates that the mouse press was
in the window’s sizing border, the default procedure will track the mouse by
processing WM_NCMOUSEMOVE messages until it receives a WM_NCLBUTTONUP. Each
time it receives a WM_NCMOUSEMOVE, it calls the Windows function MoveWindow to
provide visual feedback to the user by redrawing the window in a new size.
MoveWindow redraws the window’s nonclient area (frame) and then sends another
series of messages back to the window:
• WM_MOVE to tell it the new coordinates of its top-left corner
• WM_SIZE to tell it its new width and height
• WM_NCCALCSIZE to ask it to recalculate the coordinates of its client area (the

Windows equivalent of the Macintosh content region)
• WM_PAINT to tell it to redraw the contents of its client area
There’s also a pair of “hook” messages to allow the window procedure to get control
before and after redrawing, in case it wants to customize the operation in some
way:

The Windows Programming Model 7

8 The Windows Programming Model
• WM_WINDOWPOSCHANGING to tell it its size or position is about to change
• WM_WINDOWPOSCHANGED to tell it its size or position has just changed
(If the window procedure intercepts the WM_WINDOWPOSCHANGED message, the later
WM_MOVE and WM_SIZE messages are suppressed, since by that time the window has
already had a chance to adjust to its new position and size.)

If all this proliferation of messages strikes you as rather complex, you’re right. Keep
in mind, though, that you’re not required to deal with all of them yourself, because

The Windows Programming Model 8

9 The Windows Programming Model
the default window procedure is always there to back you up. In fact, most of these
messages are really intended to be handled by the default window procedure,
beneath your program’s level of notice. The only reason for sending the messages is
to give you the option, at various points in the process, of stepping in and taking
control for yourself. The combination of the message mechanism with the default
window procedure gives you the freedom to sit back and let the Windows system
handle everything for you, together with the flexibility to redefine or customize its
behavior if you choose to do so.

One of the common criticisms of the Macintosh Toolbox, right from the beginning,
has been the amount of coding effort needed to get even the simplest application
running. The Toolbox provides all the support needed to put windows on the screen,
move them, size them, scroll them, and so on; but there’s still a considerable
burden on the program (and the programmer) to issue the right sequence of Toolbox
calls to gather the user’s mouse clicks, interpret them, and carry them out. By
contrast, Windows’ high-level message structure and built-in default window
procedure make it comparatively easy to get a simple application running. Listing 3–
2, for example, shows the complete code for a “null” application that just puts a
window on the screen and lets the user manipulate it with the mouse. The window
has all the expected paraphernalia that we’ll be discussing in Chapter 4—a title bar
for dragging it around the screen, a sizing border, maximize and minimize boxes, a
system menu—and they all work just the way the user expects them to. If you throw
out all the comments, white space, and pretty-printing (not to mention my
somewhat verbose coding style), the entire program comes to only about 50 lines of
“live” code. An equivalent Macintosh program (including support for desk
accessories, which don’t exist in Windows) would have to be at least five times that
long.

Main Function
The main entry point to our NullApp program is named WinMain. Every Windows
program must begin with a function of this name, which takes four parameters:
• A handle to the current instance of the program, the one just being started up.

(Recall from Chapter 2 that Windows allows more than one instance of a program
to run at the same time.)

• If any other instances of the same program are already running, a handle to the
previous instance most recently started before this one. If the current instance is
the only one now running, this parameter is NULL.

• A pointer to a null-terminated character string containing any parameters being
passed to the program via its command line. This parameter is a relic of the
nasty old DOS command-line interface; in Windows, programs are normally
started with a double click or a menu command from the Program Manager or
File Manager, rather than by typing a command line. If the user starts the
program by double-clicking one of its document files, the system will pass the
document’s path name in this parameter.

The Windows Programming Model 9

10 The Windows Programming Model
Listing 3–2. A null Windows application

//
// NullApp
// Null Windows application program
// S. Chernicoff 15 January 1995
//

// Simple program to display and manipulate a window on the screen

#include <windows.h>

//--
--

// Global variables

HWND TheWindow; // Handle to main window
BOOL ContinueFlag = TRUE; // Keep running?

//--
--

// Function prototypes

INT CALLBACK WinMain (HINSTANCE thisInstance, HINSTANCE prevInstance, CHAR *commandLine, INT showState);
// Main function

VOID PASCAL Initialize (HANDLE thisInstance, HANDLE prevInstance, CHAR *commandLine, INT showState);
// Do one-time-only initialization.

VOID InitClass (HANDLE thisInstance, HANDLE prevInstance);
// Register the window class.

VOID InitWindow (HANDLE thisInstance, INT showState);
// Create the window.

VOID MainLoop (VOID);
// Execute one pass of main program loop.

VOID Finalize (VOID);
// Do one-time-only finalization.

//--
--

The Windows Programming Model 10

11 The Windows Programming Model

Listing 3–2. A null Windows application (continued)

INT CALLBACK WinMain (HINSTANCE thisInstance, HINSTANCE prevInstance, CHAR *commandLine, INT showState)

// Main function

{

Initialize (thisInstance, prevInstance, commandLine, showState); // Do one-time-only initialization

do
MainLoop (); // Execute one pass of main loop

while (ContinueFlag); // Continue until time to quit

Finalize (); // Do one-time-only finalization

return NO_ERROR; // Signal successful completion

} /* end WinMain */

//--
--

VOID PASCAL Initialize (HANDLE thisInstance, HANDLE prevInstance, CHAR *commandLine, INT showState)

// Do one-time-only initialization.

{
InitClass (thisInstance, prevInstance); // Register the window class
InitWindow (thisInstance, showState); // Create the window

} /* end Initialize */

//--
--

The Windows Programming Model 11

12 The Windows Programming Model

Listing 3–2. A null Windows application (continued)

VOID InitClass (HANDLE thisInstance, HANDLE prevInstance)

// Register the window class.

{
WNDCLASS windowClass; // Window class
HICON progIcon; // Program's screen icon
HCURSOR arrowCursor; // Default cursor
HBRUSH bkBrush; // Brush for painting window background

if (prevInstance == NULL) // Is this the first instance of program?
{

windowClass.lpszClassName = "NullApp"; // Use program name as class name

windowClass.lpfnWndProc = DefWindowProc; // Use default window procedure
windowClass.hInstance = thisInstance; // Current instance is the owner

windowClass.style = NULL; // No special style

windowClass.lpszMenuName = NULL; // No menu

progIcon = LoadIcon(NULL, IDI_APPLICATION); // Load generic icon
windowClass.hIcon = progIcon; // Set icon

arrowCursor = LoadCursor(NULL, IDC_ARROW); // Load stock arrow cursor
windowClass.hCursor = arrowCursor; // Set cursor

bkBrush = HBRUSH(COLOR_WINDOW + 1); // Create brush for system background color
windowClass.hbrBackground = bkBrush; // Set window background brush

windowClass.cbClsExtra = 0; // No extra class data
windowClass.cbWndExtra = 0; // No extra window data

RegisterClass (&windowClass); // Register the class

} /* end if (PrevInstance == NULL) */

} /* end InitClass */

//--
--

The Windows Programming Model 12

13 The Windows Programming Model
Listing 3–2. A null Windows application (continued)

VOID InitWindow (HANDLE thisInstance, INT showState)

// Create the window.

{
TheWindow = CreateWindow ("NullApp", // Use program name for class name

 "This space left blank", // Set window title
 WS_OVERLAPPEDWINDOW, // Use standard window style
 CW_USEDEFAULT, // Let Windows choose initial x
 CW_USEDEFAULT, // and y position
 CW_USEDEFAULT, // Let Windows choose initial width
 CW_USEDEFAULT, // and height
 NULL, // No parent window
 NULL, // Use menu from window class
 thisInstance, // Use current program instance
 NULL); // No special creation parameters

ShowWindow (TheWindow, showState); // Display window on screen
UpdateWindow (TheWindow); // Force update of client area

} /* end InitWindow */

//--
--

VOID MainLoop (VOID)

// Execute one pass of main program loop.

{
MSG theMessage; // Next message to process

ContinueFlag = GetMessage(&theMessage, NULL, 0, 0); // Get next message

TranslateMessage (&theMessage); // Convert virtual keys to characters
DispatchMessage (&theMessage); // Send message to window procedure

} /* end MainLoop */

//--
--

VOID Finalize (VOID)

// Do one-time-only finalization.

{
DestroyWindow (TheWindow); // Destroy the window

} /* end Finalize */
The Windows Programming Model 13

14 The Windows Programming Model
• An integer code specifying how the program is to display its main window at

startup. The value of this parameter is normally one of two constants defined in
the Windows API header files: either SW_SHOWNORMAL, meaning to display the
window in the normal way, or SW_SHOWMINNOACTIVE, meaning to show the
window initially in its minimized state (as a button in the Windows 95 task bar, or
as an icon on the desktop in earlier versions of Windows). After creating its main
window, the program typically just passes the value of this parameter along to
the Windows function ShowWindow, which will display the window in the
requested state.

Notice in Listing 3–2 that the WinMain function is declared with the keyword
CALLBACK. This keyword is defined in the Windows API header files and is required
for any function (such as a main entry point or a window procedure) that will be
called directly by the Windows system, rather than from within the program itself.

Looking at the logical structure of our WinMain function, you’ll see that it’s no
different from that of a typical Macintosh program. In fact, if you compare it with the
main function of my old MiniEdit program in Appendix A, you’ll find that it’s virtually
identical. Just as you would expect, the program begins by doing some one-time
initialization, then enters a main loop that it executes repeatedly under the control
of a boolean flag variable. In a Macintosh program, each pass of the main loop
processes one event; in a Windows program, each pass processes one message.
When something happens to change the value of the control flag, the program falls
out of its main loop, does any needed finalization, and exits back to the system
shell.

One minor difference you may notice between the Macintosh and Windows versions
of the program is the polarity of the control flag. The Macintosh version uses a
global boolean flag named Finished, which is initialized to false and becomes
true when the user chooses the Quit command from the menu; this causes the
program to fall out of its main loop and terminate. In the Windows version, the
name of this flag is changed to ContinueFlag and its polarity is reversed: it is
initially TRUE and becomes FALSE to signal termination. This change of polarity is
just a minor programming convenience resulting from the way the Windows system
signals when it’s time for the program to quit, as we’ll see later in this chapter.

Registering a Window Class
One of the first orders of business for any Windows program is to register its window
classes with the system so that it can use them to create its windows. The Windows
function RegisterClass accepts a pointer to a data structure of type WNDCLASS,
which the program fills in with descriptive information about the class to be
registered. Listing 3–3 shows the contents of this structure, which include the
following items:
• The name of the class.
• A pointer to its window procedure.
• The program instance to which it belongs.

The Windows Programming Model 14

15 The Windows Programming Model
• A word of bit flags specifying various aspects of the way its windows appear or

behave.
• An icon for representing its windows on the screen when in their minimized

state.
• A default cursor shape to use when the cursor is moved into its windows.
• A brush (like a QuickDraw pattern) for painting the background area inside its

windows.
• The resource name or ID number of its top-level menu, which defines the

contents of its windows' menu bars (actually more like a Macintosh 'MBAR' than
a 'MENU' resource).

• The number of bytes of extra, private data the program wishes to allocate in the
window class structure itself and in each window structure created from it. (We’ll
learn how to access this extra data in Chapter 4.)

Listing 3–3. Contents of WNDCLASS structure

typedef struct _WNDCLASS
{

UINT style; // Style options
WNDPROC lpfnWndProc; // Pointer to window procedure
int cbClsExtra; // Extra bytes of client data in class structure
int cbWndExtra; // Extra bytes of client data in window structure
HANDLE hInstance; // Program instance registering the class
HICON hIcon; // Icon for minimizing windows
HCURSOR hCursor; // Default cursor
HBRUSH hbrBackground; // Brush for painting window background
LPCTSTR lpszMenuName; // Resource name of menu
LPCTSTR lpszClassName; // Name of class

} WNDCLASS;

In earlier versions of the Windows system, multiple instances of the same
program weren’t allowed to reregister the same window class more than
once. The normal way to prevent this was to test the previous-instance
handle that the program’s main function received as a parameter, and
register the class only if the previous instance was NULL (that is, if no other
instance of the program already existed). Although Win32 has removed this
restriction, there’s no harm in observing it anyway for backward
compatibility, as illustrated by our NullApp program’s InitClass function in
Listing 3–2.

Every window class has to have a unique name, different from that of any other
class in the system. To ensure uniqueness, the common convention is to use the
name of your program as the name of its main window class. You can see an
example of this in the InitClass function of Listing 3–2, where the name of the
class is set with the statement

windowClass.lpszClassName = "NullApp"; // Use program name as class name

The Windows Programming Model 15

16 The Windows Programming Model
For the class’s window procedure, NullApp simply uses the system’s built-in window
procedure, DefWindowProc, without modification:

windowClass.lpfnWndProc = DefWindowProc; // Use default window procedure
This means, of course, that the program’s windows can’t do anything special
beyond the standard behavior that’s built into the system by default. This allows the
user to use all the standard components of the window (the title bar, sizing border,
and so forth) without displaying anything in the window or responding to user input
in any way. We’ll see later how to write our own window procedure to extend or
override the standard behavior.

Table 3–3. Window class style options
Style name Meaning

CS_NOCLOSE Omit close box and system-menu Close command
CS_DBLCLKS Receive double-click messages
CS_HREDRAW Redraw window when width changes
CS_VREDRAW Redraw window when height changes
CS_BYTEALIGNCLIE
NT

Align client area on horizontal byte boundaries for faster drawing

CS_BYTEALIGNWIND
OW

Align nonclient area on horizontal byte boundaries for faster
positioning

CS_SAVEBITS Save obscured portion of screen for later restoration
CS_OWNDC Allocate a private device context for each window of class
CS_PARENTDC Inherit parent window’s device context
CS_GLOBALCLASS Make class globally accessible to all programs

The style member of the WNDCLASS structure typifies a common technique that
we’ll find repeated again and again throughout the Windows programming
interface: a word of bit flags that define or modify the way an element of the
interface works. Table 3–3 shows the style options that are available for window
classes. Each of the names in the table, such as CS_NOCLOSE, is defined in the
Win32 header files as a constant bit mask corresponding to a single bit in the
WNDCLASS structure’s 16-bit style word. You can combine these masks with the C
language’s bitwise logical operators (&, |, ^, and ~) to form any combination of style
bits you need. For instance, although our NullApp program doesn’t request any of
these options (it just sets windowClass.style to NULL), we’ll see later that WiniEdit
uses the statement

windowClass.style = CS_HREDRAW | CS_VREDRAW;
to request that its windows be redrawn whenever their size changes in either the
horizontal or vertical dimension. Other options allow you to specify whether the
window has a close box, whether it receives special messages for double mouse
clicks, whether it has its own private device context (the Windows equivalent of a
QuickDraw graphics port) or inherits one from its parent, and so on. Some of these
options are rather obscure, but they’re available in case you need them.

Every window class has three graphical items associated with it: an icon, a cursor,
The Windows Programming Model 16

17 The Windows Programming Model
and a background brush. The icon defines how windows belonging to the class
appear when minimized. In older versions of Windows, it would be used to represent
the window directly on the screen, like a file or folder on the desktop in the

The Windows Programming Model 17

18 The Windows Programming Model
Macintosh Finder; in Windows 95, it is displayed in reduced form as part of the
button representing the window in the task bar. NullApp just uses the system’s
standard, “generic” application icon (Figure 3–1). This icon is available as a system
resource under the name IDI_APPLICATION:

progIcon = LoadIcon(NULL, IDI_APPLICATION); // Load generic icon
windowClass.hIcon = progIcon; // Set icon

Figure 3–1. Generic application icon

(The prefix IDI_stands for “identifier of an icon.”) WiniEdit, on the other hand,
provides an icon of its own, created and placed in the program’s executable file with
the Visual C++ onscreen icon editor. The icon’s resource ID is defined in the
program’s resource header file, WiniEdit Resources.h, as a constant named
ProgIcon_ID. The following statements load the resource and associate it with the
program’s window class:

resourceID = MAKEINTRESOURCE(ProgIcon_ID); // Convert resource ID
progIcon = LoadIcon(ThisInstance, resourceID); // Load icon
windowClass.hIcon = progIcon; // Set icon

The cursor associated with a window class tells the Windows system what cursor
shape to use by default when the user moves the mouse into one of the class’s
windows. (We’ll learn in Chapter 5 how a program can use messages from the
system to do its own cursor management.) Both NullApp and WiniEdit use the
“stock” arrow cursor, retrieved as a system resource:

arrowCursor = LoadCursor(NULL, IDC_ARROW); // Load stock arrow cursor
windowClass.hCursor = arrowCursor; // Set cursor

A brush is the Windows equivalent of a Macintosh pattern: a small pixel image that
can be repeated indefinitely to fill an area, like identical floor tiles laid end to end.
We’ll save our discussion of brushes for Chapter 6, when we talk about the Windows
Graphical Device Interface; all we need to know for now is that each window class
includes a background brush for filling in the background of a window’s client area.
Just as with icons and cursors, the system defines a set of stock brushes as system

The Windows Programming Model 18

19 The Windows Programming Model
resources, in solid black, white, and various shades of gray, as well as a transparent
or “hollow” brush.

There’s also a set of 21 brushes corresponding to system colors that the user is free
to set with the Color control panel. These represent the user’s preferences for the
colors of various user interface elements, such as COLOR_MENU for the background
color of menus, COLOR_MENUTEXT for the text of menu items, COLOR_SCROLLBAR for
the shafts of scroll bars, and so forth. In particular, the system color COLOR_WINDOW
is the color the user has chosen for painting the background area of a window. You
can get a brush for any of the system colors by typecasting the color’s ID number
directly into a brush handle (type HBRUSH). However, for reasons unknown to mere
mortals, the Windows gods have decreed that the number of the brush is one more
than the number of the corresponding system color. Thus both NullApp and WiniEdit
use the following statements to set the background brush for their window classes:

bkBrush = HBRUSH(COLOR_WINDOW + 1); // Create brush for system background color
windowClass.hbrBackground = bkBrush;// Set window background brush

NullApp’s windows don’t need any menus, since all they do is let themselves be
dragged around or resized on the screen. So the code specifying the menu for the
program’s window class is simply

windowClass.lpszMenuName = NULL; // No menu
In WiniEdit’s case, the contents of the menu bar are defined as a resource in the
program’s executable file under the resource ID Main_Menu. Because the WNDCLASS
structure expects a string defining the name of the menu resource, the integer
resource ID must be converted to the proper form with the MAKEINTRESOURCE macro
that we discussed in Chapter 2:

resourceID = MAKEINTRESOURCE(Main_Menu); // Convert resource ID
windowClass.lpszMenuName = resourceID; // Set menu

Creating and Displaying a Window
Once you’ve registered your window class, the next step is to use it to create your
main window and display it on the screen. The Windows functions for doing this are
CreateWindow and ShowWindow. We’ll just look at them briefly here and save the
details for our discussion of windows in Chapter 4.

NullApp uses the following statement to create its window:

The Windows Programming Model 19

20 The Windows Programming Model
TheWindow = CreateWindow ("NullApp", // Use program name for class name

 "This space left blank", // Set window title
 WS_OVERLAPPEDWINDOW,// Use standard window style
 CW_USEDEFAULT, // Let Windows choose initial x
 CW_USEDEFAULT, // and y position
 CW_USEDEFAULT, // Let Windows choose initial width
 CW_USEDEFAULT, // and height
 NULL, // No parent window
 NULL, // Use menu from window class
 thisInstance, // Use current program instance

 NULL); // No special creation parameters

The Windows Programming Model 20

21 The Windows Programming Model
Notice that the window’s class is identified by name, rather than directly by means
of a handle to the class object itself. This is why every window class must have a
name that is unique in the entire system. As we’ve already mentioned, the usual
convention is to use the name of the program itself (in this case, "NullApp") as the
name of its main window class. The CreateWindow function creates a window of the
specified class and returns a window handle of type HWND.

Recall that one of the parameters your WinMain function receives from the system
when you first start up is an integer code specifying how to display your main
window initially on the screen. This value is known as a show state, and is passed as
a parameter to the Windows function ShowWindow to tell it how to display the
window. Normally, the show state you receive from the system will be the constant
SW_SHOWNORMAL, meaning to open your window in its normal, fully displayed state.
However, if the user has held down the Shift key while starting up the program, or
has checked the Run Minimized option to the Program Manager’s or File Manager’s
Run... command, you’ll get a show-state parameter of SW_SHOWMINNOACTIVE
instead, telling you to display the window in a minimized, inactive state. You don’t
have to inspect this parameter for yourself, though—just pass it along to
ShowWindow after creating your main window, as our NullApp program does with the
statement

ShowWindow (TheWindow, showState); // Display window on screen
in its InitWindow routine, and Windows will do the right thing. After displaying the
window, you should also call the Windows function UpdateWindow

UpdateWindow (TheWindow); // Force update of client area
to make sure its initial contents get drawn properly. As we’ll see in Chapter 4, the
result is to generate a WM_PAINT message to your window procedure, telling it to
draw the contents of the client area—just like a Macintosh update event.

Main Loop
After doing its preliminary initialization, our program’s main function, WinMain,
enters its message loop, in which it repeatedly calls the routine MainLoop under the
control of a global flag, ContinueFlag. As long as this flag remains TRUE, the
program will continue iterating the loop; when the flag becomes FALSE, the loop will
terminate and control will fall through into the Finalize routine.

The Windows Programming Model 21

22 The Windows Programming Model
Our MainLoop routine issues calls to three Windows functions: GetMessage,
TranslateMessage, and DispatchMessage. GetMessage is the basic message-
retrieval function, analogous to GetNextEvent or WaitNextEvent on the Macintosh.
It accepts a pointer to a message structure as its first parameter, fills it in with
descriptive information about the message, and removes the message from the
queue. The remaining parameters allow you to place restrictions on the kind of
message you’re requesting. The second parameter is a window handle, limiting the
request to messges addressed specifically to that window or one of its children. A
NULL handle, as in the current example, denotes any window belonging to the
current thread (the one issuing the GetMessage call). The last two parameters
narrow the request to a limited range of (minimum and maximum) message types;
they thus serve a purpose similar to (though less flexible than) the event mask
parameter to GetNextEvent or WaitNextEvent on the Macintosh. For example, you
can limit your request to mouse messages only by setting these two parameters to
the constants WM_MOUSEFIRST and WM_MOUSELAST, or to keyboard messages by using
WM_KEYFIRST and WM_KEYLAST. Setting both parameters to 0 asks for the next
pending message in the queue, regardless of type.

The GetMessage function returns a boolean result that’s always TRUE unless the
message being returned is WM_QUIT. You can use this boolean value to control the
termination of your main message loop, as NullApp does by setting the global
ContinueFlag. How does Windows know when to send you a WM_QUIT message? You
tell it when, by calling the Windows function PostQuitMessage. (Our WiniEdit
program, for instance, calls this function in response to the user’s choosing the Exit
menu command.) The WM_QUIT message gives your window procedure a chance to
do any last-minute cleanup it might need before falling out of the message loop.

You may be wondering what happens if you ask for a message and there
aren’t any waiting in the queue. Windows has no equivalent to the Macintosh
concept of a null event. Instead, the GetMessage function simply suspends
your thread’s execution until a message arrives, allowing other processes or
threads to run in your place. When your call to GetMessage does eventually
return, it’s guaranteed to come back with a bona-fide message for you to
respond to.

There’s also an alternative retrieval function, PeekMessage, which always
returns immediately, with or without a message to report. Like GetMessage,
PeekMessage returns a boolean result; but whereas GetMessage uses its
result to signal the arrival of a WM_QUIT message, PeekMessage uses it to
report whether there was a message in the queue to retrieve. If there is a
message, PeekMessage copies it to the message structure you supply as a
parameter and returns a TRUE result; if the queue is empty, it returns FALSE
and leaves the message structure untouched. PeekMessage also takes an
additional parameter telling it whether to remove any message it returns or
leave it in the queue for later processing; the latter option makes it
analogous to the Macintosh EventAvail function.

Finally, if PeekMessage reports that the queue is empty, you can use the
Windows function WaitMessage to suspend execution of your thread pending

The Windows Programming Model 22

23 The Windows Programming Model
the arrival of a message, similarly to what GetMessage does when it finds the
queue empty.

The Windows Programming Model 23

24 The Windows Programming Model
After receiving a message from GetMessage, the next step is to pass it to another
Windows function, TranslateMessage. This is a rather specialized function that
maps raw keystroke messages such as WM_KEYDOWN and WM_SYSKEYDOWN into
corresponding character-based messages like WM_CHAR and WM_SYSCHAR, under the
control of the currently installed keyboard layout; it has no effect on non-keyboard
messages. We’ll have more to say about TranslateMessage when we discuss
keyboard input processing in Chapter 5; for now, all we need to know is that every
message we receive from GetMessage should be passed to TranslateMessage
before further processing.

The key step after retrieving a message from the queue is to pass it to the Windows
function DispatchMessage. This examines the message to see which window it’s
addressed to, looks up the window class to which the window belongs, and relays
the message to the window procedure registered for that class. What happens next
is up to the window procedure, which is, of course, part of your program that you
write yourself. Our NullApp program doesn’t have a window procedure of its own: it
simply uses the system’s built-in window procedure, DefWindowProc, for all of its
message processing. For an example of a real, live window procedure, we’ll have to
turn to our fully developed example program, WiniEdit.

The real heart of a Windows program is its window procedure (commonly known as
a “winproc”), which analyzes and responds to the messages the program receives
from the system. Just to review some of what we’ve already learned:
• Windows sends messages to a window.
• The window belongs to a window class.
• The window class has a window procedure, identified as a parameter when the

class was registered.
• All messages sent to the window are passed to its class’s window procedure for

processing.
Theoretically, a program could register more than one window class and thus define
more than one window procedure; but in practice, the great majority of Windows
programs have just one window procedure that receives all messages addressed to
any of their windows.

Table 3–4. Macintosh window messages
Message code Meaning

wNew Initialize new window
wCalcRgns Calculate structure and content regions
wDraw Draw window frame
wDrawGIcon Draw size region
wGrow Draw feedback image for resizing window
wHit Find where mouse was pressed
wDispose Prepare to dispose of window

The Windows Programming Model 24

25 The Windows Programming Model
One way to think about the window procedure is to compare it to the Macintosh
window definition function, or WDEF. Both accept messages sent by the system at
strategic times to allow you to customize some aspects of a window’s operations.
But the Macintosh version accepts only a very limited set of messages and no
others

The Windows Programming Model 25

26 The Windows Programming Model
(Table 3–4). This means the Macintosh WDEF is only screen-deep: it lets you change
the window’s superficial appearance, but not its underlying behavior. On the other
hand, since it’s a resource, it can be incorporated into any program’s application file
with a tool like ResEdit, without touching the code of the program itself. In Volume
Three of my Macintosh Revealed series, for instance, I developed a sample window
definition function named SideWindow that displays a window with its title bar
running vertically down the side instead of horizontally across the top (Figure 3–2).
Simply by compiling this function into a 'WDEF' resource and copying it into my
program’s application file with ResEdit, I was able to produce a version of MiniEdit
that displayed its windows in this form.
Figure 3–2. A Macintosh side window

By contrast, the Windows window procedure is part of the program itself, so it can’t
be changed without recompiling the entire program. It can have any name the
program chooses to give it (in WiniEdit, it’s named DoMessage), but must always
have the following standard function signature:

LONG CALLBACK DoMessage (HWND thisWindow, // Handle to window receiving message
 UINT messageCode, // Message identifier
 WPARAM wParam, // Type-dependent information
 LPARAM lParam) // Type-dependent information

The keyword CALLBACK is required because the window procedure is a callback
function: one that’s designed to be called by the Windows system, rather than from
within the program itself. Notice that the procedure’s four parameters are the same
as the first four fields of the message structure, which we looked at earlier (Listing
3–1). The parameters wParam and lParam, you’ll recall, contain message-dependent
information that varies from one type of message to another. (The names are a
holdover from earlier versions of the Windows system, in which one of the
parameters was a 16-bit word and the other a 32-bit long word; in Win32, both the

The Windows Programming Model 26

27 The Windows Programming Model
WPARAM and LPARAM data types are equated to LONG, so both parameters are

The Windows Programming Model 27

28 The Windows Programming Model
actually 32 bits.) The procedure returns a result of type LONG, whose significance is
also message-dependent. The meanings of the parameters and result for any
particular message type are given in the Win32 Programmer’s Reference.

Listing 3–4 shows WiniEdit’s window procedure. It’s essentially just a big switch
statement that examines the message type and calls the appropriate routine within
the program to respond to it. The switch has a branch for each type of message
that the program chooses to deal with explicitly. In WiniEdit’s case, there are only
ten of these: WM_CREATE, WM_SIZE, WM_CTLCOLOREDIT, WM_SYSCOLORCHANGE,
WM_SETFOCUS, WM_INITMENUPOPUP, WM_COMMAND, WM_QUERYENDSESSION, WM_CLOSE,
and WM_DESTROY. We’ll be discussing a few of these in the rest of this chapter and
the others later in the book. All other messages fall through into the switch
statement’s default branch, which simply relays them to the system’s default
window procedure, DefWindowProc, to be dealt with in the standard way. Since
many of the messages directed to a window are really designed to be handled by
Windows itself, this last step is crucial to allow the system to receive these
messages.

Listing 3–4. WiniEdit’s window procedure

LONG CALLBACK DoMessage (HWND thisWindow, UINT msgCode, WPARAM wParam, LPARAM lParam)

// Get and process one message.

{
LONG result = 0; // Function result

ErrorFlag = FALSE; // Clear I/O error flag

switch (msgCode) // Dispatch on message code
{

case WM_CREATE:
DoCreate (thisWindow, wParam, lParam); // Handle WM_CREATE message
break;

case WM_SIZE:
DoSize (thisWindow, wParam, lParam); // Handle WM_SIZE message
break;

case WM_CTLCOLOREDIT:
result = DoCtlColorEdit (thisWindow, wParam, lParam); // Handle WM_CTLCOLOREDIT message
break;

case WM_SYSCOLORCHANGE:
DoSysColorChange (thisWindow, wParam, lParam); // Handle WM_SYSCOLORCHANGE message
break;

case WM_SETFOCUS:
DoSetFocus (thisWindow, wParam, lParam); // Handle WM_SETFOCUS message
break;

The Windows Programming Model 28

29 The Windows Programming Model

Listing 3–4. WiniEdit’s window procedure (continued)

case WM_INITMENUPOPUP:
DoInitMenuPopup (thisWindow, wParam, lParam); // Handle WM_INITMENUPOPUP message
break;

case WM_COMMAND:
DoCommand (thisWindow, wParam, lParam); // Handle WM_COMMAND message
break;

case WM_QUERYENDSESSION:
result = DoQuery (thisWindow, wParam, lParam); // Handle WM_QUERYENDSESSION message
break;

case WM_CLOSE:
DoClose (); // Handle WM_CLOSE message
break;

case WM_DESTROY:
DoDestroy (thisWindow, wParam, lParam); // Handle WM_DESTROY message
break;

default:
result = DefWindowProc (thisWindow, msgCode, // Pass message to Windows

wParam, lParam); // for default processing
break;

} /* end switch (msgCode) */

return result;

} /* end DoMessage */

Table 3–5 lists a few messages related to overall program control. We’ve already
mentioned the most important of these, WM_QUIT, several times. Windows sends the
WM_QUIT message when a program asks for it by calling the Windows function
PostQuitMessage. This is the only message that causes the GetMessage function to
return a FALSE result, signaling the program to fall out of its message loop and
terminate.

The Windows Programming Model 29

30 The Windows Programming Model
The other two messages in the table are invoked when the user attempts to end the
Windows session by exiting from Windows or shutting down the computer. Before
shutting down, Windows sends a WM_QUERYENDSESSION message to each running
program, asking the program’s permission to end the session. If a program is in an
inconvenient state, such as in the middle of an operation that shouldn’t be
interrupted, it can deny permission by returning a FALSE result to this message.
Listing 3–5, for instance, shows how WiniEdit handles the WM_QUERYENDSESSION
message. (Portions of the code are shown in skeleton form because they involve
parts of the Windows programming interface that we haven’t discussed yet.) The
WiniEdit function for responding to this message, DoQuery, in turn calls another
program function, CloseDoc, to close the document displayed in its document
window. If the contents of the doucment are “dirty” (have been changed since being
read from or written to the disk), CloseDoc displays a message box asking the user
whether to save the document before shutting down. If the user selects the “Yes”
button, the function saves the window’s contents to the the disk and returns a
boolean result of TRUE; DoQuery in turn relays this value back to the system,
indicating permission to proceed with the system shutdown. If the user selects “No,”
or if the document isn’t dirty, it returns the same result, but without saving the
document. (In each of these cases, CloseDoc also takes care of some other
housekeeping, closing the document file and clearing the text displayed in the
window to empty.) However, if the user selects the third choice in the message box,
“Cancel” (or if an error occurs in saving the document to the disk), the function
returns a FALSE result, denying permission for the system to shut down.
Table 3–5. Messages relating to program control
Message type Meaning

WM_QUIT Terminate program
WM_QUERYENDSESSI
ON

OK to end Windows session?

WM_ENDSESSION Windows session ending

As soon as any program returns a FALSE response to the WM_QUERYENDSESSION
message, Windows immediately stops sending such messages to the remaining
programs and cancels the system shutdown; if, on the other hand, every running
program responds TRUE, the system proceeds to shut down as planned. In either
case, it sends each program a WM_ENDSESSION message with a boolean parameter
indicating whether the shutdown is proceeding. If the parameter value is TRUE, this
message constitutes a “goodbye kiss,” notifying the program that the system is
definitely about to shut down and giving it one last chance to do any final
housekeeping it may require. If the parameter is FALSE, the message informs the
program that the intended system shutdown, announced by the previous
WM_QUERYENDSESSION message, has been canceled.

The Windows Programming Model 30

31 The Windows Programming Model
Listing 3–5. Handle WM_QUERYENDSESSION message

BOOL DoQuery (HWND thisWindow, UINT wParam, LONG lParam)

// Handle WM_QUERYENDSESSION message.

{
BOOL confirmed; // Did user confirm operation?

confirmed = CloseDoc (); // Allow user to save document if necessary
return confirmed; // Report confirmation or cancellation

} /* end DoQuery */

The Windows Programming Model 31

32 The Windows Programming Model
Listing 3–5. Handle WM_QUERYENDSESSION message (continued)

The Windows Programming Model 32

33 The Windows Programming Model
BOOL CloseDoc (VOID)

// Close document displayed in window.

{
BOOL dirty; // Window contents changed since last save?
INT msgResult; // Result value returned by message box
BOOL confirmed; // Did user confirm operation?

dirty = /* Has text been edited? */;
if (dirty)

{
msgResult = /* Display message box on screen */;

switch (msgResult) // Dispatch on message result
{

case IDYES:
/* Save window contents to disk */;
confirmed = !ErrorFlag; // Confirm if no error
break;

case IDNO:
confirmed = TRUE; // Confirm without saving
break;

case IDCANCEL:
confirmed = FALSE; // Cancel operation
break;

} /* end switch (msgResult) */

} /* end if (dirty) */

else
confirmed = TRUE; // Confirm if not dirty

if (confirmed) // Did user confirm operation?
{

if ((TheFile != NULL)) // Is window associated with a file?
/* Close file */

/* Clear edit control's text */

} /* end if (confirmed) */

return confirmed; // Report confirmation or cancellation

} /* end CloseDoc */

The Windows Programming Model 33

34 The Windows Programming Model
Sometimes, in the course of your program’s operations, it’s convenient to be able to
send a message to a window yourself—either to one of your own windows or to one
belonging to another program or process. There are two ways of doing this,
depending on whether you want the message sent in queued or unqueued form.
The Windows function PostMessage is analogous to PostEvent on the Macintosh; it
places a specified message in a window’s message queue (more precisely, in the
queue for the thread that created the window). It then returns control immediately
to the point of call, without waiting for the message to be retrieved and processed
by the thread’s message loop. Note that you can post any message you like this
way: it doesn’t have to be one of the normal queued messages listed earlier in Table
3–2.

The second function, SendMessage, dispatches a message directly to the relevant
window procedure. In this case, the processing of the message takes place
synchronously: by the time control returns from the SendMessage call, the window
procedure will already have processed the message to completion.

As on the Macintosh, you can define message types of your own and use
PostMessage or SendMessage for internal coordination within your program itself.
The Macintosh Event Manager originally reserved four of the sixteen possible event
types for application use, though one of them has since been reclaimed by the
system. In Windows, you can use any message type from 0x0400 to 0x7FFF for your
own purposes. The Windows API header files define a constant named WM_USER
denoting the lower limit of this range (0X0400). Such messages are valid only for
sending private messages from one window to another within the same window
class (that is, under the control of the same window procedure). For communication
between windows of different classes (those belonging to different application
programs, for instance), you have to obtain an officially registered message type
from the Windows function RegisterWindowMessage. Message types in the range
0xC000 to 0xFFFF are reserved for messages in this category.

The Windows Programming Model 34

35 The Windows Programming Model
Table 3–6 summarizes some common Windows functions relating to messages and
message queues. We’ve already discussed some of them in this chapter; you can
learn about the rest in the Win32 Programmer’s Reference.

Table 3–6. Common message functions
Function Mac counterpart Purpose

GetMessage WaitNextEvent Retrieve next message from queue or
yield control until one arrives

PeekMessage GetNextEvent Retrieve next message from queue, if
any

WaitMessage ————— Yield control until message arrives in
queue

GetQueueStatus EventAvail Check queue for presence of selected
messages

GetInputState ————— Any mouse or keyboard messages
pending in queue?

TranslateMessage ————— Translate raw keyboard message to
character equivalent

DispatchMessage ————— Dispatch message retrieve from queue
to window procedure

GetMessagePos EventRecord.where Mouse position at time of message
GetMessageTime EventRecord.when Time message was posted

PostMessage PostEvent Place message in queue
SendMessage PostEvent Send unqueued message directly to

window procedure

RegisterWindowMes
sage

————— Define message type for
interapplication communication

PostQuitMessage ————— Signal program completion

The Windows Programming Model 35

36 The Windows Programming Model
• The Macintosh Toolbox
communicates with programs by
sending them events.

• Windows communicates with
programs by sending them
messages.

• Macintosh programs are based
on an event loop that retrieves and
processes events one at a time.

• Windows programs are based
on a message loop that retrieves and
processes messages one at a time.

• A Macintosh program receives
the user’s mouse clicks and
keystrokes in the form of events.

• A Windows program receives
the user’s mouse clicks and
keystrokes in the form of messages.

• A Macintosh event is
represented by an event record.

• A Windows message is
represented by a message structure.

• A Macintosh event record has
fields giving the type of event, the
time it was posted, and the
coordinates of the mouse at the
time.

• A Windows message structure
has fields giving the type of
message, the time it was posted, and
the coordinates of the mouse at the
time.

• Each Macintosh program has
an event queue in which the system
posts events and the program
retrieves them with GetNextEvent or
WaitNextEvent.

• Each Windows program (or
each thread within a multithreaded
program) has a message queue in
which the system posts messages
and the program retrieves them with
GetMessage.

...Only Different
• Macintosh events are directed
to the program as a whole.

• Windows messages are
directed to a particular window
within the program.

• A Macintosh program’s event
loop processes each event directly
by examining its type and
transferring control to the
appropriate part of the program to
respond to it.

• A Windows program’s
message loop passes each message
to the Windows function
DispatchMessage, which in turn
dispatches the message back to the
program’s window procedure; the
window procedure then examines the
message type and transfers control
to the appropriate part of the
program to respond to it.

• The Macintosh has sixteen
event types.

• Windows has hundreds of
message types.

The Windows Programming Model 36

37 The Windows Programming Model
• Most Macintosh events report
user-level actions such as mouse
clicks and keystrokes.

• Most Windows messages
report higher-level actions such as
moving, resizing, or scrolling a
window or sending it a menu
command.

• Macintosh programs must
explicitly respond to every event
themselves.

• Windows provides a default
window procedure that defines a
standard response to each message;
programs needn’t handle an event
explicitly unless their response
differs from the default.

• Macintosh events have a
single type-dependent parameter.

• Windows messages have two
type-dependent parameters, one
nominally word-length and the other
a long word; in Win32, both are
actually long words.

• Conceptually, all Macintosh
events are posted to the event
queue and retrieved with
GetNextEvent or WaitNextEvent.

• Many Windows messages are
not posted to the message queue,
but sent directly to the relevant
window procedure.

• A Macintosh program has to
hit-test and decode its own mouse
clicks (with help from the Toolbox)
and call the appropriate Toolbox
routines to respond to them.

• A Windows program can let
the default window procedure hit-test
and decode its mouse clicks,
converting them into high-level
messages representing the meaning
of the click.

The Windows Programming Model 37

